--- title: "Cropping and subseting your presence absence matrix" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{cropping-and-subseting-your-presence-absence-matrix} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console --- ```{r setup, include=FALSE} knitr::opts_chunk$set(fig.height = 5, fig.width = 10, fig.align = 'center') ``` In this guide, we'll dive into the technique of subsetting or cropping a `PresenceAbsence` object. To accomplish this task, we'll use the `lets.subsetPAM` function. Just let the function know which species you want to keep and provide the `PresenceAbsence` object as input. ```{r, message=FALSE, warning=FALSE} # Package library(letsR) # Data data("PAM") names <- PAM$Species_name[1:20] # keep only the first 20 names PAM_subset <- lets.subsetPAM(PAM, names) par(mfrow = c(1, 2)) plot(PAM, main = "All species") plot(PAM_subset, main = "Subset") ``` You might also find it useful to crop your `PresenceAbsence` object to a specific region using a shapefile. The `lets.pamcrop` function offers a straightforward method to achieve this. For instance, let's crop our Presence-Absence Matrix (PAM) to the borders of Brazil. ```{r} data(wrld_simpl) # World map data(PAM) Brazil <- wrld_simpl[wrld_simpl$NAME == "Brazil", ] # Brazil (polygon) PAM_crop <- lets.pamcrop(PAM, Brazil, remove.sp = TRUE) par(mfrow = c(1, 2)) plot(PAM, main = "South America") plot(PAM_crop, xlab = "Longitude", ylab = "Latitude", main = "Phyllomedusa species richness (Brazil crop)") plot(sf::st_geometry(wrld_simpl), add = TRUE) ``` **To cite letsR in publications use:** *Bruno Vilela and Fabricio Villalobos (2015). letsR: a new R package for data handling and analysis in macroecology. Methods in Ecology and Evolution. DOI: 10.1111/2041-210X.12401*